
Ring exchange and the Heisenberg and Hubbard models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 9359

(http://iopscience.iop.org/0953-8984/6/44/016)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 20:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. F’hys.: Condens. Matter 6 (1994) 9359-9382. Rimed in the UK 

Ring exchange and the Heisenberg and Hubbard models 
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Schml Of Physics, Birmingham Unlversi@. Edgbaston. Birmingham B15 ?.‘IT, UK 

Received 11 May 1994, in final form 15 August 1994 

Abstract. We study ringachmge or cyclic-pemutation correlations in onedimensional 
quantum spin-half systems. For the Heisenberg model we show numerically that t h m  
wrrelations decay as R. - 1 fJn, although we can deduce nothing about any possible imponant 
logarithmic correcdons. As such, ringexchange correlations ate much longer range than the 
more commonly considered spin-spin correlation functions. By considering the relationship 
beween solitonic excitation8 and cyclic permutations, we suggest a way to predict the value of 
J z J J I  at which the phase transition between a gapped and gapless phase occurs in the next- 
nearest-neighbour Heisen- model, suggesting Jz = 4.Q as the exact uansition point. For 
the Hubbard model with a spipcharge-separated solution, we show that the occupation number, 
nl;, is a ‘wnvolurion’ of the cyclic-permutation wrrelations of the spin gmund slate with the 
myonic occupation number of the charge gmund stale, with the integration beiing over statistical 
phase. We deduce the one-eighm singularity previously found for the U = m Hubbard model 
using this new route. 

We show that for the limit where nearest-neighbour hopping dominates longer-range hopping 
in the U = m Hubbard model, the single-particle wrrelation function, n ~ .  for an infinitesimal 
concentmion of holes in a half-filled system, is identical to the Fourier transform of the 
cyclic-exchange correlations of the corresponding spin wavefunction. For the elemenmy t r t z  
model, we show a relationship behwm the singularity which occurs at the Fermi surface, the 
so-called Luttinger-liquid singularity, and the long-range Heisenberg-model cyclic-permutation 
correlations. 

1. Introduction 

The role of quantum mechanics in spin physics has entertained the last generation of 
many-body theorists. The one-dimensional Heisenberg model has been solved using the 
Bethe mutz  [I], and the low-temperature physics of the model has been successfully 
understood by a combination of field-theoretic [2] and conformal-invariance [3] ideas. Even 
provided with these results, it is still not easy to interpret the ‘behaviour’ of the Heisenberg 
model. There is certainly a divergence in the sublattice magnetization, since the spin-spin 
correlations decay as S. . - ( - l~( lnn) ’~z /n ,  and there are low-energy ‘spin-wave’- 
like excitations, and so one might like to interpret the behaviour using classical ideas. 
Alternatively, there are also solitonic spin-half excitations [4], and one might l i e  to hy to 
interpret the behaviour using this ‘spinon’ route. Which description is more relevant? 

Due to the enormous degree of attention devoted to classical magnetism, the natural 
methods of interpretation are well known, to the extent that they are even taught in 
undergraduate physics. The same cannot be said for the solitonic description, which remains 
a mystery to all but many-body theorists. We would like to suggest that the central ‘tool’ 
for studying solitons in quantum spin systems is the cyclic permutation, which plays the 
analogous role to the spin-spin correlation function in classical magnetism. 
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Cyclic permutations or ring exchanges involve sliding a contiguous set of spins either 
one atom to the right or one atom to the left. The 'displaced' spin, which would be 
'overwritten' by the move is replaced in the gap left at the other end. If one thinks about 
total-spin conservation, then one is led to believe that this is the simplest operation which 
allows 'sliding' motion of the spins subject to a total-@n-conservation constraint. 

q a0 U, 0, 0, b* ........... en-* a,, U"+, 

The action of cyclic-exchange permutations is depicted in figure 1. A0 extraneous 
spin (marked by 0) is extracted and moved, leaving a pair of spins originally at second 
neighbour now at nearest neighbour (denoted by *). As the range of the cyclic permutation 
is increased, so these two distortions are separated. A related operation is depicted below, 
for which the same pair of second neighbours is sequentially separated, although now the 
e x t r a "  spin is placed between variable pmners. The Fourier transform of the range of 
cyclic-permutation correlations should give information about the motion of these defects. 

If we consider the saturated N&l state, then we are immediately led to some 
interpretation: although the spin-spin correlations arc long range, the cyclic-permutation 
correlations all vanish identically. The action of the cycliopermutation operators is to insert 
a finite region of N&l state with the sublattices reversed, states automatically orthogonal to 
the original. Together with this region are necessarily the two phase boundaries between 
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the two different N€el orderings. These ‘domain walls’ play the role of the solitons in the 
classical limit, and our cyclic permutations create these ‘excitations’ in pairs. As the range 
of the cyclic permutation diverges, so the domain walls are pushed further apart, and so 
we might expect information about the solitons from the long-range behaviour of the cyclic 
permutations. 

If we consider the totally quantum-mechanical dimer state [5],  then we are led to 
complementary intuition: the spin-spin correlations vanish identically once we go beyond 
nearest neighbours, whereas the cyclic permutations decay much more slowely although 
still exponentially. Sinfe each spin is correlated only with one of its nearest neighbours, it 
is easy to understand the lack of spin-spin correlations. The cyclic permutations, however, 
once again insert a finite region of the second phase into the ground state, creating a pair of 
domain walls. At first sight, one might have expected the cyclic-permutation correlations 
to vanish for the same reason as for the Nee1 state, but the two ground states are not IoculZy 
orthogonal and so we still obtain some correlations. We will interpret the cyclic-permutation 
correlations as ‘creation’ operators for domain walls, and so wewill expect them to measure. 
the number of domain walls in the ground state. Since there is a finite gap to excitations 
in the dimer Hamiltonian, we would expect a finite number of domain walls, but if the gap 
were to close we would expect the domain walls to proliferate. We will exhibit a lot of 
numerical evidence for this picture. 

The spin-spin correlations and cyclic-permutation correlations measure complementary 
properties: when there is order in the system and the excitations are local ‘spin-wave’- 
like excitations then the spin-spin correlations are long range and the cyclic-permutation 
correlations vanish. When the ‘order’ in the system is los.6 we believe that it is caused by a 
proliferation of solitonic excitations, and so the spin-spin correlations become short range 
while the cyclic-permutation correlations become dominant. Of course, things are not quite 
as straightforward as this, since there is always a sublattice magnetization divergence in 
the gapless phase, and it is really only the amplitude that vanishes when the order is lost. 
Similarly, as we shall see, the long-range aspects of the cyclic-permutation correlations are 
also always singular in the gapless phase, although their amplitude becomes larger as the 
magnetization vanishes. Once a gap appears, we would expect both types of correlation to 
exponentially decay, since the excitations are somehow related to this behaviour [61. 

The picture we wish to paint is that of spinkpin correlations measuring the number 
of spin-wave-like excitations in the system while cyclic-permutation correlations measure 
the number of solitonic excitations, both in a rather loose sense. If the system has a phase 
transition associated with a softening of the solitonic excitations, then this shows up in the 
long-range characteristics of the cyclic-permutation correlations, whereas if the system has 
a phase transition associated with a softening of the spin waves, then this shows up in the 
long-range characteristics of the spin-spin correlations. We will look at the phase transition 
in the Jl-Jz model with just this interpretation in mind. 

Together with this rather pure interpretation of one-dimensional quantum spin physics, 
we will also make a connection to quantum-charge physics, and in particular the infinite-U 
Hubbard model. When electrons move around in quasi-one-dimensional systems, longer- 
range hopping involves an electron passing over a,variable number of intermediate electrons 
in its motion. If we consider a spin-chargeseparated description, where. we describe the spin 
wavefunction along some chosen ordering independently from the position of the ‘holes’ in 
the system, then a longer-range hop involves the spin on theelectron that is being bodily- 
moved changing its position down the spin wavefunction combined with a shunt of all the 
intermediate spins by one electron ,position to compensate: this process is just a cyclic 
permutation of the~spin system. AS far as the spin system is concerned, ~ ~ o & i ~ ~ )  is 
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composed of cyclic permutations on the spin system combined with probabilities of the 
number of spins involved which come from the charge motion; that is a sort of convolution 
of the ring-exchange correlations over the charge correlations [7]. The quantity nk,  the 
single-particle occupation number, is the Fourier transform of these hopping correlations 
and as such is directly related to the Fourier transform of the cyclic-permutation correlations. 

If we consider a single hole in an otherwise half-filled system, then presuming that there 
is no spatial symmetry breaking, that is the hole is equally likely to be found anywhere, 
then the charge wavefunction is uniform. Under this reshiction nk is almost exactly the 
Fourier transform of the cyclic-permutation correlations, as we shah show. The Luttinger- 
liquid singularity at the Fermi surface, which is found in spin-cbarge separated systems 
[SI, is therefore directly related to the cyclic-permutation correlations found in the spin 
wavefunction. We will try to elucidate this relationship. 

In section 2 we will Iook at cyclic permutations in quantum-spin physics, using the 4- 
.7~ Heisenberg model as a concrete example. In section 3 we will look at cyclic permutations 
in spin-charge-separated systems, using the t1-t~ infinite4 Hubbard model as a concrete 
example. In section 4 we will conclude. 
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2. Quantum spin systems 

2.1. Numerical approximations 

This article involves numerical attemm to find cower ws. For the &fermion gas, 
we have accurate calculations for ranges over hun&eds of atoms, and we give convincing 
evidence. For other situations we use the Lanczos algorithm on small (26site) clusters and 
are not very convincing. We employ various elementary fitting procedures which arc all 
relatively stable, but which do not yield accurate results. *the quantity has a power-law 
behaviour, then it is likely that we will pick up the exponent with an error of order 10% 
. We do not go to long range in real space, and so any long-range phenomena are not 
predicted well. Do not believe all you read! 

2.2. Some mathemarical ideas 

Although we could start out with some calculations, indicating the type of result we desire to 
'establish', instead we will start out with some relatively obscure mathematical relationships 
which we believe to be relevant. 

Our first task is to select some relevant objects to work with: we have chosen the 
translation operator, f say, and the transposition operator which permutes the two spins 
on atom zero and atom one, @ f + 2& & say. We will be concerned with periodic 
translationally invariant systems, and so we will assume [A, f] = 0, that is that we can 
work with eigenstates of the translation operator which from Bloch's theorem can be chosen 
to have eigenvalues the phase e@, and that f N  = 1, where N is the number of atoms in 
the system. ,In terms of these objects and assumptions it is quite straightforward to define 
the quantities of interest to us. 

The cyclic-permutation operators, 8, say, can readily be found in terms of f and 
8. The operators which transpose the spins on atoms n and n + 1 are just @. = 
1 + 28, . &+, = T"PT", and in terms of these the cyclic-permutation operators are, 1 
R. = @,@I. . . Pnn-2P,,-lr where the spin on the nth atom is carried sequentially along the 

.. ^ ^  
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chain to the origin. Writing the product down yields 

R. = [P?T i - n .  

There is a 'strange' sort of quasipericdicity inherent to the cyclic-pennutation opertors, since 

RN-I = T, and SO [ ^ ^ I N - '  PT = 1. Sensible choices of Bloch phase involve d(N-l)k = f l ,  

quite different to the eigenvalues of ?. 
The first quantity of interest to us is the Fourier transform of the spin-spin correlation 

functions. This can be found directly from the state obtained by applying the spin operator 
from the atom at the origin to the ground state: 

.. .. 

The second quantity of interest to us is the Fourier transform of the cyclic-permutation 
correlation functions. Once again we can obtain this quantity directly: 

Although at first sight these two results look similar, there are some important differences. 
Firstly, the periodicity is different. Secondly, the spin-spin correlations involve 'fixing' a 
spin on a special site and then comparing it with other sites, whereas the cyclic-permutaion 
correlations are quite direct. 

We have reached the point of ow mathematical digression: both Fourier transforms can 
be written down in terms of a geometric sum of unitary operators, and divergences in these 
quantities must involve 'significant' components of either ,901 Q) being an eigenstate of i, 
or IQ) being an eigenstate of b?. 

2.3. The x-y model 

Although this model is peripheral, the 'simplicity' of the solution has led us into devoting 
much energy to its analysis. The model is 

in terms of the spin perpendicular to the zdirection, 2;. and hard-core boson operators bi .  
UnliEe the Heisenberg model, the sign of J is irrelevant and the model simultaneously 
describes in-plane ferromagnetism or antiferromagnetism. Since the particles cannot 
exchange, we can use either type of statistics. The hard-core constraint leads to an immediate 
exact solution if fermionic statistics [9] are used. Since the exact solution is the non- 
interacting free-electron gas, we can evaluate all correlation functions, in principle, in terms 
of single-particle correlation functions. We attempt such analytic calculations and then 
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, ( a )  , Correlations, , 

0 0 . 0 1  0 . 1  0 . 1 5  0.2 0 . 1 '  

x 

1 

I 

Figure 2. A mixture of analytical and finite-size exact diagonahtion calculations for the spin- 
spin correkdion functions of the onFdiTensional x-y model. (a) The Fourier transform of 
the spin-spin correlations, 1. emt"So . S,, with many small systems superimposed (symbols) 
and the exact result iruncated (soli? h e ) .  (b) Finite-size scaling of the spin-spin correlations 
diamenically acms the loop, S N ~  x NIP. as 3 function of inverse loop length. N. 

compare them with exact-diagonalization studies in order to test our predictive power with 
the computer. 

The spin-spin correlations are straight forward to evaluate, if we note that ' 
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Correlations ~ ~ - 
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Figure 2. (Conrinued.) (c) Plot of the exact spinspin correlations, $0 -Sa xn'/l. as a function 
of inverse range, n. If we have comctly chosen the power law, our plots should converge to a 
6nite constant. 

where j ,  are the associated fermionic operators. This fermionic quantity can be evaluated 
as an n x n determinant, which can be found numerically for ranges of up to about 500 
lattice spacings. In figure 2 we plot various spin-spin correlation quantities. The Fourier 
transform has a divergingp+ at the origin, for the ferromagnetic case, which appears to 
come from a slow decay, SO. S, - l/nllZ, for the correlation functions. We have finitesize 
scaled the correlation function diamehically across the ring for our exact-diagonalization 
calculations, in the same way that we do for our later, less well controlled models. We plot 
the exact correlations, as deduced from ow determinant calculations, for comparison and 
the two calculations agree very well. The numerical determinant calculations indicate that 
3 0 .  in - l/n1D is almost certainly exact, and has only negligible spatial corrections, that 
is no extraneous additional subdominant power laws. 

The cyclic-pennutation calculations are by no means as simple: it has proven impossible 
to find a representation for these correlation functions in terms of a single determinant. A 
representation which at first sight looked useful is 

but we could only make progress with 
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Obviously, the final representation involves 2" n x n determinants and is therefore 
impressively computationally expensive. There is a second method for evaluating these 
correlation functions which is much less expensive numerically. It is based on the operators 
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L + l  = 1 - (f; - f,+l)(f - fr+d + 2f;f,f,+,f+l (2.8n) 

(2.8b) k + l  = 1 - (fj - L d f r  - f r+d 

in terms of which we can rerepresent 

which, using the commutation relations of the f' collapses down to 

in = n A  m,m+ 1+2Cfot(fr+fo)fit(fi+fi)...~~:t_,(fi+~-i)f,fi 
"-1 "-1 

m=O r=O 

x f,:*f,+l(ff,l - f,+f,i,,W+*..'(fn-l t - f # ) f n  (2.9b) 

each term of which can be independently evaluated as a determinant. This representation 
yields one n x n determinant and n different (n + 1) x (n + 1) determinants and a 
corresponding saving in computer time. In figure 3 we plot the corresponding quantities 
for cyclic permutations as we did for spin-spin correlations. We plot both the real part and 
the imaginary part, which are derived from different @values, which in turn correspond 
to different boundary conditions for cyclic-permutation 'periodicity'. It appears that the 
cyclic-permutation correlations decay rather faster than the spin-spin correlations, with a 
(R,) - l/nS/* power law. The divergence is associated with the k-point half-way to the 
zone boundary, the 'Fermi surface' of the model. Once again, the accuracy that we can 
reach numerically indicates that (RJ - is exact, but for this case there are clear 
subdominant power laws in the scaling. 

For the current model, we would Like to deduce that the classical spin-wave-like 
excitations are more relevant than the solitonic excitations. When we include longer-range 
hopping, this result is much less obvious, because the model changes its characteristics, 
developing a gap and eventually yielding a dimer ground state when x = Jz/J1 = a. For 
situations where the cyclic permutations Fe dominant, we are proposing that the phase 
transition to a gapped state occurs when the cyclic-permutation divergence is maximal. If 
the phase transition to the gapped phase is to be controlled by the solitons in the x-y 
model, then as the value of x is increased, we would require that the roles of the two types 
of correlations should reverse, and that the cyclic permutations should become dominant. 
Numerically this assertion appears to be confirmed. 

If we consider the smcture of the dispersion for excitations, it is easiest to believe that 
the phase transition is associated with a softening of the linear dispersion at the 'Fermi 
surface' to a quadratic dispersion which then 'lifts' off. The expeckd fluctuations in the 
ground state would be expected to be maximal at the phase transition, becomingfnite in 
the gapped phase. In figure 4 we finitesize scale the value of the ratio x which corresponds 
to the maximum value of the cyclic-exchange correlations at the 'Fermi surface', that is 
the singular point. It is quite easy to believe that this maximum occurs at x = f .  We will 
mention the state found at x = f again later. 
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(b)  C o r r e l a t i o n s  
1.275 

I 

Figure 3. A mixture of analytical and finite-size exact diagonalion calculaiions for the cyclic- 
pmtation wrrelation functions of the one-dimensional x-y model. (a) The real-and imaginary 
p m  of the Fourier transfoim of the cyclic-permutation correlations. ~ n ~ m x n R . ,  with many 
small systems superimposed (symbols) and the exact result Inn~cated (solid line). (b) Finite42 
scaling of the cyclic-pemutation correlations diametrically amss  the loop, R N ~  x NSP, as a 
function of inverse loop length, N. 

2.4. The long-range cyclic-permutotion model 
~ Due to the attention lavished on tfie classical Niel state, we h o w  a lot about the spin-spin ~ 

~ 
~ 
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0.35  1 , , , , 
a 0.1 0.4 0.6 0.8 

t 0 . 6 0 9  

‘ 1 0 ’ ~  - .  
Figure 3. (Continued.) (c) Plot of the exact cyclic.px”ion ~mlations, Rn x “518, as 
a function of inverse range. n. If we have correctly chosen the power law, our plots should 
wnverge to a finite constant. 

correlations, even in the quantum-dominated systems. The same is not true for cyclic- 
permutation correlations. Even for a quantum system there is a total-spin-singlet analogue 
to the N&l state: we make the two natural sublattices have maximal spin and then add 
these spins together to form a total-spin singlet. The spin-spin correlations for such a state 
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Figure 4. 52/51 at which the Fourier 
wansform of the cyclic-permutation correlations calculated half-way to the zone boundary is 
maximum. The scatter comes from numerical inaccuracy, since this quantity is expensive to 
&date numerically. It is easy to believe ~ l a t  this c w e  converges to f .  

A finite-size-scaling calculation of the value of x 

do not decay at all, simply oscillating between fi. This state constitutes the longest-range 
spin-spin correlations for a total-spin singlet. Which state yields the longest-range cyclic- 
permutation correlations for a total-spin singlet, and is there the equivalent of long-range 
order? 

In order to gain some insight into the question of maximal range for cyclic-permutation 
correlations, we have studied the long-range Hamiltonian composed of the two Fourier 
components of the cyclic-permutation operators corresponding to k = &k,-: 

~ 

~ 

(2.10) 

where Rj;" is the cyclic exchange operator for n + 1 particles starting at site j, and the 
f degree of freedom corresponds to the two possible k-points and can be absorbed into 
a judicious choice of boundary conditions for a periodic system, since the real part and 
imaginary part of the Hamiltonian can usually be chosen to be proportional to each other. 

~ 

~ 

~ - 

The fundamental cause of this simplification is that 

. I  

and therefore that for a Bloch state. the k;' - &RN-"-I and for an even-membered 
loop, odd-length cyclic permutations have even-length cyclic permutations as their inverses, 
yielding a relationship between the real and imaginary parts. 

It is skaightforward to use exact diagonalization on finite systems, and we find a total- 
spin-singlet ground state reminiscent of the nearest-neighbour Heisenberg model ground 
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F i e  5. Finite-sile-scaling calculations, using exact diagonalization for the 1ong;fa"Y cyclic- 
permutation model, of (U) the spin-spin correlations diamehically across the ring SO. SN,Z x N 
as a function of $verse loop length. N, and (b) the cyclic-permutation correlations diamevically 
m s s  the ring R N ~  x NIP as a function of inverse loop length. N. 

state. In figure 5 we finite-size scale both the spin-spin correlations and the cyclic- 
permutation correlations for the case of permutations diametrically across the loop. The 
spin-spin correlations are best fitted by a S, - l / n  power law, whereas the cyclic-exchange 
correlations are best fitted by a R, - 1/n'l2 power law. 
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It would appear that it is impossible to achieve long-range cyclic-permutation 'order'. 
The longest range would appear to be square-root decay. It should also be observed that in 
comparison to the x-y model, the role of the two types of correlation has reversed, with 
the cyclic-permutation correlations now being longer range. 

2.5. The Jl-Jz Heisenberg model 

In this section we will look at the relationship between the cyclic-permutation correlations 
and the phase transition which is known to exist in the J1-Jz Heisenberg model. 

A lot is known about two particular cases of this model: firstly, the case JZ = 0 
has been solved using the Bethe unsatz and the spin-spin correlations have been deduced 
from the continuum limit 121. Secondly, the case JI  = 2Jz is hivially solvable [5] by 
a pure dimer state and most correlation functions can be calculated immediately. The 
nearest-neighbour Heisenberg model has a l/n spin-spin correlation decay with logarithmic 
corrections, and the dimer state has exponential decay for both spin-spin and cyclic- 
permutation correlations. These results are consistent, in our interpretation scheme, with the 
nearest-neighbour Heisenberg model being gapless and the Hamiltonian yielding the dimer 
ground state having a gap. Somewhere in between these two systems the gap must open 
up at a phase transition. 

Our first problem is that we do not know the behaviour of the cyclic-permutation 
correlations in the nearest-neighbour Heisenberg model. In figure 6 we finite-size scale 
these correlations yielding a prediction of a l/n1/2 power law, much slower than the spin- 
spin correlations. Surprisingly, we find similar results to the long-range model and quite 
dissimilar results to the x-y model. We would naturally l i e  to conclude that the low-energy 
excitations are quite different for the two models. 

The spin-spin correlations for the Heisenberg model are problematic. Unlike the long- 
range model, a simple s,, - I/n power law is inappropriate; there are logarithmic corrections 
[lo]. Unfortunately, our best fit is given by S, - ( l r ~ n ) l / ~ / n ,  the wrong logarithmic 
correction. We do not understand this anomaly at present. This result has been found 
previously in Monte Carlo simulations [ll], but at that time there was no field-theory 
prediction to cause concern. 

When we start to consider a prediction for where the phase transition might occur, we 
are led to a very surprising result. Unlike the x-y model, where the value of Jz /JI  at which 
the maximum of Rb+ occurs varies as a function of loop-size, Rk+ is a maximum exactly 
when 51 = 4Jz for all loop sizes. A possibly related fact is that when 452 = -51 > 0 
there is an exact degeneracy between a maximum-spin state and a minimum-spin state for 
all values of loop size, yielding another phase transition in the system. We believe that the 
phase transition in this Heisenberg model occurs exactly when JI = 452. 

When we look at this special value of the parameters, we see another fairly surprising 
fact the solution to the Heisenberg model is almost identical to the solution of the long- 
range cyclic-permutation model of the preceeding section. The correlation functions for 
ow largest system (26 sites) agree to 0.01% for example, and the overlap between the 
long-range ground state and the 31 = 452 ground state is 0.99996! 

If we return briefly to the x-y model, then a study of the special case when 51 = 3Jz, 
that is the point at which we predict the phase transition, once again we find a state very 
similar to the long-rangemodel ground state, with correlation-function agreement to about 
2% for our largest system (26 sites). 

We would suggest that these phase transitions to a gapped phase are all the same 
phenomenon, being controlled by proliferation of solitonic spin excitations. The natural 
correlation functions to study are the cyclic permutations, and power-law singularities in 
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Figure 6. Finite-size-scaling calculations using exact diagonalization for the neyst-?eighbur 
Heisenberg model. (U)  ?he spin-spin conelations diametrically acmss the ring SQ. S N ~  x N 
as a function of inverse loop length, N. (al) #Q . SN/Z x N/~,~II(N/Z))~/', as a function of 
inverse loop length, N. ?he power should be f. 

these quantities control the physical behaviour. The phase transition itself may have an 
as-yet unprobed relationship to the long-range model that we considered. 
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5 

Fgure 6. (Conrinued.) (6) The cycliopermutation correlations diametrically acms the ring 
AN,* x N ' D  as a function of inverse loop length N. 

3. Hubbard models and cyclic permutations 

The relevance of cyclic permutations to the Hubbard model comes from a particular 
representation of the Hubbard model which is of use when the ground state is 'spin- 
charge separated': the idea is that the spin degrees of freedom and the charge degrees 
of freedom decouple leading to 'independent' excitations. In one dimension, where this 
behaviour is best understood, we can use the order of the electrons along the chain to label 
the spin degrees of freedom, a labelling which does not change in the fast 'concertinaing' of 
electrons, but only in the slow exchange processes where the order of the electrons changes. 
The basis we use is 

(3.1) i t  t t t  t ci,u,ci2u* .. .c,"un IO) = 6, & '. ' 8" IUIUZ '. .Un) 

where c ! ~  create the original electrons, fit are fermion creation operators for the charge 
only, and n is the total number of electrons. In te rm of this we can write down a general 
state as 

where N is the total number of atoms, x j  are variables which 'count' whether or not 
an electron is present on a site, II = ZL, x i  ensures that we have the correct number 
of electrons, C, is a charge wavefunction which does not depend on spin, and ,$': is 
a spin wavefunction which does (in general) depend on the charge configuration. This 
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representation is quite general, and we can write down the original hopping amplitudes in 
this basis: 

M W Long et al 

x - 1 + * I  x Ra;;q+m-q-~ - (3.3) 
where the xi measure whether or not an electron is on a particular site i, and in terms of 
which the cum = E;"=, xl count how many electrons come before a particular site, making 
a useful spin label. The first two f operators move the charge. The summations over the 
x variables break the states down into all possible charge configurations between the two 
end-points of the charge transfer. The operator involving the z-component of spin ensures 
that the electron moved has the correct spin, and the final spin arrangement conserving 
the spin order along the chain is effected by our cyclic-permutation operator RkZ. This 
representation has been studied before [12]. 

A 'spin-charge-separated' solution would involve only irrelevant dependence of the 
spin wavefunction on the charge configuration: although we would expect some differences 
between the spin wavefunctions, local enhancements of some spin-spin correlations when 
charges bunch up for example, we would expect each spin wavefunction to have a strong 
overlap with the others, allowing the charges to move around independently from the spins. 
Indeed, we can envisage a sort of 'average' spin wavefunction which controls the spin 
physics, and then irrelevant hybridization into other spin configurations locally, as the charge 
bunches up, in a very similar manner to the way in which quantum fluctuations 'renormalize' 
a cIassical antiferromagnetic solution. If the spin wavefunction did not depend on the charge 
configuration, then we could evaluate. the charge correlation functions, controlled by the 
fit, and cyclic-permutation functions independently and form the singleparticle correlation 
functions as a sort of 'convolution'; the strength of the contribution from a particular cyclic 
permutation depending on the probability of finding the correct number of particles between 
the hop. We would find 

2 

where IC) is the charge wavefunction and IS) is the spin wavefunction. For the particular 
case of the infinite-U Hubbard model when all but the nearest-neighbour hopping is 
infinitesimal, this result is exact [12]. 

If we insert the Fourier transform of the cyclic-permutation correlations, then 

(3.5a) 

with 
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where we recognise the singleparticle correlation function for anyonic statistics! When our 
particle is transfemd from site i f m to site i, it picks up a phase of (-l)e-@, for each 
particle passed over. If we choose to work with anyonic particles with statistical phase 
d(z-9), then this phase would be compensated and we would evaluate (Cl$fi7+mlC). the 
single-particle occupancy for anyonic particles. The final Fourier transform yields 

with each possible statistics being weighted by the relevant component of the cyclic- 
permutation correlations. This result is quite general and depends only upon the assumption 
that the spin wavefunction does not depend on the charge wavefunction. Obviously this 
assumption can only be expected to be true for very long-range correlations in general. 

I 

Figure 7. Scaling of m’-q/n+’/2(q/n)2 x li,,,(g)l as a function of Ifm, for the values 
q = (0.1,0.2,0.3,0.4,0.5,0.6,0.1,0.8,0.9,1.0)a. The parlicular choice of band filling is 
half filled. and the residual long-range oscillation is related to this choice: the ’pairs-of-curves’ 
aspen can bc understood f” the liikewwd of finding odd and even numbers of electrons 
between the two chosen end-pins of the transfer. The fact that all superimposed plots tend to 
a constant indicates that the power law proposed is c o m a .  The fact that the ‘constant. depends 
on q indicates &at them is additional dependence which has not been understood. 

~ ~ 

~ ~ 

~ 

For the elementary case of infinitesimal longer-range hopping in the infinibll Hubbard 
model, this separation becomes exact, and further the charge wavefunction reduces to that of 
the spinless-fermion ground state. It is possible to evaluate the relevant anyonic correlation 
functions as determinants: 



where a(q) = 1 - e-q and n, E (fitfih) = sinnnor/nr. A numerical analysis of these 
quantities reveals that 

(3.8) 

which is deduced from figure 7. The phase factor is easy to understand, being the phase 
picked up from the average number of particles between the end-points of the hop, but the 
power law is difficult to understand. Obviously, fermions (q = 0) and bosons (q = a) 
yield the correct results as deduced from our previous calculations. The Fourier transform 
yields 

&(q) a Jk - n*ql-q/z+1/2(q/r)z (q > 0) (3.9) 

and hence 

(3.10) 

a 'sort-of convolution. Our previous analysis of the Heisenberg model suggests that 

with s = f for the nearest-neighbour Heisenberg model. This in turn predicts 

(3.11) 

(3.12) 

to leading order, in complete agreement with the results previously obtained from field 
theory [13]. 

Obviously, for infinitesimal longer-range hopping the charge wavefunction is invariant 
and so the behaviour of the number occupancy is controlled by the spin wavefunction. The 
nearest-neighbour Heisenberg model yields s = 4, but as next-nearest-neighbour interactions 
become important we might expect the power to change. Numerical work suggests that s 
increases without bound as 42/51 H CO, although the numerics are not conclusive. 
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The only assumption which underpins our results is that the spin wavefunction does 
not depend on charge. In order to look more closely at this assumption and to make a 
connection with previous work [14], we have analysed the singlehole problem in some 
detail. 

In this article we will be dominantly concerned with a single hole in the infinite-U 
Hubbard model. This ensures that the ‘number-fluctuation’ aspect is irrelevant, since there 
is only one hole. Enforcing Bloch’s theorem then eliminates the charge degrees of freedom 
completely, and we are left with 

(3.13) 

where we have left the dependence of the spin wavefunction on the position of the hole 
explicit. For this case, the c h g e  in the occupation number because of the hole is identicdly 
a Fourier transform of cyclic-permutation operators. The spin wavefunction is no longer 
translationally invariant, being ‘centred‘ around the hole, however Bloch’s theorem on the 
original system does imply that we find the same spin wavefunction for each hole position 
once the wavefunction has been translated to yield the same position for the hole. 

We perform calculations on the tl-#z model with a single hole, evaluating the function 
nk from (3.13). We use the non-translationally invariant spin wavefunction when necessary. 
For the limiting cases of tl  ++ 0 or tz H 0, the hole moves so far in between the minor 
degeneracy-breaking interactions that there is no point in distorting the spin structure around 
the hole and we rigorously find a translationally invariant spin state. For the case of t2 H 0 
we find the Heisenberg ground state, and so the relevant cyclic-permutation correlations 
are precisely those of the quantum-spin system of the previous section. For the case of 
II H 0 we find a state reminiscent of the Heisenberg ground state but ordered on the Mobius 
connectivity of a single sublattice [14]. For situations with tl and tz of similar magnitude, 
there is a strong local spin distortion in the vicinity of the hole, but this distortion does not 
appear to spread over a large distance. The spin correlations in the ‘background’ spin state 
far from the hole can be long range, and it is to these correlations that we attribute most of 
the finite-size effects that we have observed. 

There is an important difference between the cyclic-permutation Fourier transform 
relevant to quantum-spin systems and that for the Hubbard model: the hop to nearest 
neighbours does not permute any spins, and so the non-hivial correlations only occur at 
next-nearest-neighbour hopping. The initial contribution controls the overall shape of the 
occupation number, forcing the electrons into the best energetic areas for a short-range- 
hopping model. In figure 8 we plot nk for the t1-t~ model with one additional hole away 
from half filling, in the limit tz H 0 for a system with 26 spins. The singularity at the non- 
interacting Fermi surface is clearly growing, together with the uniform real-space features 
that one would anticipate from the energetics. This is the case where the spin wavefunction 
is translationally invariant and so we find the pure Heisenberg state with the corresponding 
long-range singularity. 

0, 
then things change. Firstly, the short-range cyclic-permutation correlations change so as to 
optimize the relevant energetics. In figure 9 we plot nk for the opposite l i t  of tl H 0, 
and it is clearly seen that the periodicity has effectively doubled leading to four Fermi 
points as might be anticipated from the free-electron-gas solution. The divergences still 
appear to be present. Secondly, it is possible for the spin physics to change completely 
[14]. In figure 10 we plot nk for the case tz = 2t1, for a system with 22 spins. There is 

When we consider longer-range hopping for the energetics of the hole, that is tz 
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Figure 8. (a) The occupation number, ne. for one full period, and (b) the Fourier transform 
of the spin-spin correlalions also for one full period. for a single hole in the infinite-U ti+ 
Hubbard model in the limit that tz w 0. We calculated this quantity for a system of 27 atom 
and 26 demons. The calculations have clearly not converged, the= being a singuldty either 
half way to the m c  boundary, or at the zone boundary. 

no long-range contribution, since the spin wavefunction has spontaneous broken symmetry 
and only short-range correlations present. 

We believe that the behaviour of nk is controlled by cyclic-permutation correlations in 
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Fourier Transform ? 

N w e  9. ( U )  The occupation number, fib, for one full period, and (6) the Fourier transform 
of the spin-spin coneWons, also for one full period, for a single hole in the infinite-U t1-h 
Hubbard model in the h i l  that 11 tf 0. W e  calculated this quantity for a system of 27 atoms 
and 26 electrons. The calculations have clearly not converged, there being a singularity either 
q u m  way b the zone boundary, or half way to the zone boundary. 

a spin-charge separated system. If the spin wavefunction has a divergence then we are led 
to a ‘Luttinger liquid’ [SI, but if the spin wavefunction has only short-range correlations 
then we are led to a system with no singularity in nk and rather more exotic behaviour. 
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Fou i e r  Trans arm 

Figure 10. (a) The occupation number, nk. for one full period and (b) the Fourier hdnsfonn 
of the spin-spin conelahons, also for one full period. for a single hole in the infinitdl 1 i - t ~  
Hubbard model in the limit chat tz = 2rl .We calculated this quantity for a sysbm of 23 atoms and 
22 elect”. Ihe calculations have converged because there are only don-range correlations. 

4. Conclusions 

We believe that cyclic-permutation correlations are an important concept in the 
understanding of topological ‘defects’ in quantum-spin systems. We believe, admittedly with 
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little analytical support, that cyclic permutations are directly related to topological excitations 
and are a measure of the susceptibility to excitations for short-mnge Hamiltonians. We 
anticipate a similar relationship between fluctuations in ‘long-range’ classical order leading’ 
to low-energy spin waves, and fluctuations in ‘long-range’ cyclic-permutation correlations 
leading to low-energy ‘spinons’. 

In quantum-spin systems with power-law correlations, we associate singularities in the 
Fourier transform of cyclic permutations with a zero in the spinon dispersion. Further, 
for a phase transition caused by a softening of such a spinon dispersion, we anticipate 
a ‘maximum’ in the relevant cyclic-permutation correlations. We have used this idea to 
predict that the phase transition in the J1-32 Heisenberg model occurs exactly at 32 = 431, 
the classical phase transition-point. 

In ‘spin-charge’-separated solutions to the infinite4 Hubbard model, we associate 
‘Luttinger-liquid’ singularities with divergences in the cyclic-permutation correlations, 
predicting the relationship between the electron density and the motion of the singularity. 
We envisage as many different types of behaviour as there are possible types of spin 
wavefunction, including power-law singularities and dimer ground states. For systems with 
dominant charge motion, we anticipate that the low-temperature behaviour will be controlled 
by the weaker spin physics, with the phase changes in the onedimensional Hubbard model 
being controlled by changes in the spin subsystem. 

Our chargemotion analysis is subject to the exact decoupling of the spin from the charge. 
For the specific case of one hole, we examine this decoupling, finding that the coupling 
between the system is strong, but restricted to the near vicinity of the hole, consequently 
being irrelevant to the low-energy arguments. 

We provide a relationship between singularities encountered in the Hubbard-model 
occupation number to singulaxities in the independent spin and charge subsystems. Although 
the freefermion-gas calculations are under control, the corresponding Heisenberg-model 
calculations require much more analysis, with severe problems encountered in recognising 
the difference between power laws and logarithmic corrections. 

Our analysis suggests that the dominant changes to be expected in spin-charge separated 
systems should come from the spin degrees of freedom, where the robust spinless-fermion 
charge motion is replaced by subtle weak interactions between spins, controlled by the 
various exchange processes, which strongly depend on the electron density, and which are 
permitted by longer-range hops. 

This article suffers from a lack of the formal mathematics required to make the physical 
ideas concrete. We believe that such mathematics can be developed and will yield a 
framework in which to study quantum problems involving solitonic excitations and their 
related phase transitions. 
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